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Bowling Description
Two people — we’ll call them A and B — are playing a bowling game.
They have n bowling pins in a row, and they take turns to knock over pins using special bowling balls until there are no pins
left standing.
The first bowling ball is small, and it always knocks over just one pin.
The other one is large, and it always knocks over exactly 3 pins. To be clear, a player is only allowed to use a large ball on
three pins that are right next to each other.
No player ever misses.
A goes first, and if a player has no available moves in her turn (i.e. if the player that went before knocked over all the pins)
then she loses.

Bowling Analysis
Our goal is to find the nimber for any n-size row of starting pins.
Let the function mapping n to its nimber be N .
Also, number the pins 1, 2, . . ., n from left to right.

Claim:

N (n) =

{
1, if n is odd

0, if n is even

Proof:
We will prove this by strong induction.

Base Cases:
N (0) = 0
N (1) = 1
N (2) = 0
N (3) = 1
Thus, the claim holds for n = 0, 1, 2 or 3.

Induction Hypothesis:
Suppose for some m ≥ 4, the claim is true for all i < m.

Induction Step:
We want to prove that the claim is true for m + 1.

If m + 1 is odd, then throwing a large bowling ball will reduce the number of pins to m − 2, and throwing a small bowling
ball will reduce the number of pins to m. Notice that both m and m− 2 must be even numbers. To sum up, throwing any
bowling ball will give us an even number of pins.
If the pins knocked over are all on either the left or right end of the row, then we will be left with a continuous row of an
even number of pins. By the I.H. such a position has nimber 0.
If the pins knocked over are somewhere in the middle of the row, we will be left with two continuous rows of pins, with a
“gap” in the middle that was formerly occupied by the knocked pins. These two continuous rows must either both have an
even number of pins or both have an odd number of pins. In the former case, the situation will have nimber 0⊕ 0 = 0 and
in the latter case, the situation will have nimber 1⊕ 1 = 0.
It follows that all the “child” positions of the situation with a row of m + 1 pins have nimber 0. So, the minimum excluded
value is 1, which means N (m + 1) = 1 when m + 1 is odd.

If m + 1 is even, then throwing a large bowling ball will reduce the number of pins to m− 2, and throwing a small bowling
ball will reduce the number of pins to m. Notice that both m and m − 2 must now be odd numbers. To sum up, throwing
any bowling ball will give us an odd number of pins.
If the pins knocked over are all on either the left or right end of the row, then we will be left with a continuous row of an
odd number of pins. By the I.H. such a position has nimber 1.
If the pins knocked over are somewhere in the middle of the row, we will be left with two continuous rows of pins, with a
“gap” in the middle that was formerly occupied by the knocked pins. One of these rows must have an even number of pins
and the other row must have an odd number of pins. By the I.H. in this situation the nimber is either 0⊕ 1 = 1 or 1⊕ 0 = 1.
It follows that all the “child” positions of the situation with a row of m + 1 pins have nimber 1. So, the minimum excluded
value is 0, which means N (m + 1) = 0 when m + 1 is even.

We have proved the claim to be true for m + 1.
Thus by strong induction the claim must hold for all natural numbers. �
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Bowling Possibilities
Suppose the rule about the use of the large bowling ball is altered, and now players can disregard “gaps” in the row of pins
while throwing the large ball.
To illustrate, in the previous game if a player was faced with the following situation (each vertical line represents a pin, and
each star represents a position in the row previously occupied by a pin but now empty):

| | * | | |

then the players would have to treat it as two “disjoint” piles.
Now, they are allowed to throw a large ball in such a way that they can turn the above position to the following one in a
single move:

| * * * | |

One might ask how this changes the nimbers that can be achieved. The answer is that it makes things much less well-behaved.
The nimbers from n = 0 to n = 100, in array form, are:

rawNimbers = [ 0, 0, 1, 0, 0, 0, 1, 2, 3, 0,

0, 0, 0, 0, 9, 2, 8, 0, 0, 0,

0, 1,15, 1, 0, 0, 0, 1,11,10,

0, 0, 0, 0, 0,22, 1,20, 0, 0,

0, 0, 0, 0,29, 1, 8, 0, 0, 0,

5, 1,10, 0, 0, 0,21, 2, 9, 0,

0, 0, 0, 0, 0,39,10,11, 0, 0,

0, 0, 1,17,10, 0, 0, 0, 1,16,

9, 0, 0, 0, 0, 0,10, 1,40, 0,

0, 0, 0,22,18, 8, 0, 0, 0, 9,

67 ]

We can plot with n on the x-axis versus N (n) on the y-axis to get:

I looked at the nimbers, as well as the differences between these nimbers, and there were no good, reliable patterns. I tried to
prove first that there was no upper bound on the nimbers as n increases, and also that there are infinitely many 0-positions,
but I could not get that to work.
Furthermore, I believe that more data is necessary to see if this eventually becomes periodic or not, but even after spending
a considerable amount of time memoizing and optimizing my code, computing nimbers for n higher than 100 did not take
viable amounts of time.
I moved to a new game, which I will discuss in the next section.
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Transfer Description
This is a game for two players, who take turns making moves.
We have three points P = {P1, P2, P3} in a plane.
Consider a function s : P→ N, where s(Pi) denotes the number of “stones” at point Pi.
Initially, s(P1) = s(P3) = 0 and s(P2) = n.
A player, in her turn, may either move some stones from P2 to P1 or she may move some stones from P2 to P3, but she can’t
do both.
Also, the following invariants must be respected:

1. s(P1) ≤ s(P2) and s(P3) ≤ s(P2).

2. If, at the start of a player’s turn, s(P1) < s(P3) then at the end of the turn s(P1) ≤ s(P3) must hold.
Similarly, if at the start of a player’s turn it is true that s(P3) < s(P1) then at the end of the turn s(P3) ≤ s(P1) must
hold.

If a player cannot make any moves, then she loses.
This means we can describe a game of this form with a tuple (a, b, c) which means s(P1) = a, s(P2) = b, s(P3) = c.

Transfer Analysis
We claim that:

N (0, n, 0) =


0, if n is odd orn = 0

1, if n is even and n 6= 4

2, if n = 4

We can easily find out that:
N (0, 0, 0) = 0
N (0, 1, 0) = 1
N (0, 2, 0) = 0
N (0, 3, 0) = 1
N (0, 4, 0) = 2
N (0, 5, 0) = 1

Then, we prove all the following for n ≥ 0:
N (0, 6n + 6, 0) = 0
N (0, 6n + 7, 0) = 1
N (0, 6n + 8, 0) = 0
N (0, 6n + 9, 0) = 1
N (0, 6n + 10, 0) = 0
N (0, 6n + 11, 0) = 1

Each of the proofs involves casing on whether the number of stones moved by the first player is < 6n+i
3 and even, < 6n+i

3

and odd, or just ≥ 6n+i
3 .

Note that we provide a full induction proof for the (0, 6n + 8, 0) case, and for the others we show exactly how to modify
the first proof to give us the needed result.
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Proof for 6n + 8 Case
We want to prove the following proposition:

P (n) : (0, 6n + 8, 0) ∼= ∗1 where n ≥ 0

We will use strong induction to prove the above statement.

Base Cases:
Using our program, we have verified that P (n) holds for n ∈ {0, 1, 2, 3}.
The fact that (0, 2, 0) ∼= ∗1 will also be useful.

Induction Hypothesis:
Assume for some k ≥ 1 that ∀ n < k, P (n) holds.

Induction Step:
We need to prove that P (k) holds. In other words, we need to show:

(0, 6k + 8, 0) ∼= ∗1

Simplifying the problem,
To show that (0, 6k + 8, 0) has nimber 1, it suffices to show the following:

1. In one move, we can reach a state with nimber 0

2. In one move, we cannot reach a state with nimber 1

Looking at the initial state’s children,
Notice that in one move from the original state we can reach any state of the form:

(m, 6k + 8−m, 0) where 1 ≤ m ≤ 3k + 4

the remaining states that we can reach from the original state are of the form:

(0, 6k + 8−m, m) where 1 ≤ m ≤ 3k + 4

Since the latter form is symmetric to the former, focusing our analysis on the former is enough to complete the proof.

When m = 3k + 4:
Observe that when m = 3k + 4, we obtain the state (3k + 4, 3k + 4, 0) which clearly has nimber 0, so we have proved
the first fact we need.

When m is odd and 1 ≤ m ≤ 2k + 2:
When m is an odd number satisfying 1 ≤ m ≤ 2k + 2, notice that

(m + 1, 3k + 4− m+1
2 , 3k + 4− m+1

2 ) ∼= ∗0

Work one step backwards from this to get

(m, 3k + 5− m+1
2 , 3k + 4− m+1

2 ) ∼= ∗1

Observe that
(m, 6k + 8−m, 0)

one move−−−−−−→ (m, 3k + 5− m+1
2 , 3k + 4− m+1

2 )

It follows that the minimum excluded value of the nimbers of all the child states of (m, 6k + 8−m, 0) cannot be 1, and
thus the nimber of this state cannot be 1, by the Sprague-Grundy theorem.
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When m is even and 1 ≤ m ≤ 2k + 2:
When m is an even number satisfying 1 ≤ m ≤ 2k + 2, observe that

(m, 6k + 8−m, 0)
one move−−−−−−→ (m, 6k + 8− 2m, m)

We can replace m with 2i where 1 ≤ i ≤ k + 1 to get

(2i, 6k + 8− 2i, 0)
one move−−−−−−→ (2i, 6k + 8− 4i, 2i)

In the resultant state, the difference between the left and middle values, also the difference between the right and middle
values, is

6(k − i) + 8

Which intuitively suggests that

(2i, 6k + 8− 4i, 2i) ∼= (0, 6(k − i) + 8, 0) for 1 ≤ i ≤ k + 1

and although we lack a rigorous argument for this we will assume it is true.
Our knowledge that (0, 2, 0) ∼= ∗1 and also our induction hypothesis, tell us:

(0, 6(k − i) + 8, 0) ∼= ∗1 for 1 ≤ i ≤ k + 1

Consequently, (2i, 6k + 8− 4i, 2i) ∼= ∗1.
It follows that the minimum excluded value of the nimbers of all the child states of (m, 6k + 8−m, 0) cannot be 1, and
thus the nimber of this state cannot be 1.

When m ≥ 2k + 3:
If m ≥ 2k + 3, it is clear that

(m, m, 6k + 8− 2m) ∼= ∗0

Working backwards from this, we get that

(m, m + 1, 6k + 7− 2m) ∼= ∗1

We know that
(m, 6k + 8−m, 0)

one move−−−−−−→ (m, m + 1, 6k + 7− 2m)

It follows that the minimum excluded value of the nimbers of all the child states of (m, 6k + 8−m, 0) cannot be 1, and
thus the nimber of this state cannot be 1.

Conclusion:
1 must be the mex of the nimbers of the children of (0, 6k + 8, 0) , so we have proved that (0, 6k + 8, 0) ∼= ∗1, using
the Sprague-Grundy theorem.
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Details for 6n + 6 Case
Consider the initial position

(0, 6n + 6, 0) where n ≥ 0

The first move will take the initial position to a position of the form

(m, 6n + 6−m, 0) where 1 ≤ m ≤ 3n + 3

If m = 3n + 3:
This is the state (3n + 3, 3n + 3, 0) which clearly has nimber 0.

If m ≤ 2n + 2 and m is odd:
Then, consider the following move sequence,

(m, 6n + 6−m, 0)

one possible child−−−−−−−−−−−→ (m, 3n + 4− m+1
2 , 3n + 3− m+1

2 )

only child−−−−−−→ (m + 1, 3n + 3− m+1
2 , 3n + 3− m+1

2 )

If m ≤ 2n + 2 and m is even:
Consider the following move sequence:

(m, 6n + 6−m, 0)

one possible child−−−−−−−−−−−→ (m, 6n + 6− 2m, m)

∼= (0, 6n + 6− 3m, 0)

Since m is even, we can write it as 2i for some 1 ≤ i ≤ n + 1.

(0, 6n + 6− 3m, 0)

∼= (0, 6n + 6− 6i, 0)

∼= (0, 6(n− i) + 6, 0)

By our induction hypothesis, (0, 6(n− i) + 6, 0) has nimber 1.

If m ≥ 2n + 3:
The move sequence below works:

(m, 6n + 6−m, 0)

one possible child−−−−−−−−−−−→ (m, m + 1, 6n + 5− 2m)

only child−−−−−−→ (m, m, 6n + 6− 2m)

Which provides us with everything we need to fill in the proof skeleton.
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Details for 6n + 10 Case
Consider the initial position

(0, 6n + 10, 0) where n ≥ 0

The first move will take the initial position to a position of the form

(m, 6n + 6−m, 0) where 1 ≤ m ≤ 3n + 3

If m = 3n + 5:
This is the state (3n + 5, 3n + 5, 0) which clearly has nimber 0.

If m ≤ 2n + 3 and m is odd:
Then, consider the following move sequence,

(m, 6n + 10−m, 0)

one possible child−−−−−−−−−−−→ (m, 3n + 6− m+1
2 , 3n + 5− m+1

2 )

only child−−−−−−→ (m + 1, 3n + 5− m+1
2 , 3n + 5− m+1

2 )

If m ≤ 2n + 3 and m is even:
Consider the following move sequence:

(m, 6n + 10−m, 0)

one possible child−−−−−−−−−−−→ (m, 6n + 10− 2m, m)

∼= (0, 6n + 10− 3m, 0)

Since m is even, we can write it as 2i for some 1 ≤ i ≤ n + 1.

(0, 6n + 10− 3m, 0)

∼= (0, 6n + 10− 6i, 0)

∼= (0, 6(n− i) + 10, 0)

By our induction hypothesis, (0, 6(n− i) + 10, 0) has nimber 1.

If m ≥ 2n + 4:
The move sequence below works:

(m, 6n + 10−m, 0)

one possible child−−−−−−−−−−−→ (m, m + 1, 6n + 9− 2m)

only child−−−−−−→ (m, m, 6n + 10− 2m)

Which provides us with everything we need to fill in the proof skeleton.
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Details for 6n + 7 Case
In these three situations our goal is different — we need to show that the root position has the nimber 0. For this, we should
show that all the “children” of this position have nimber > 0. Now to show that a position has nimber > 0, we need to show
that it in turn has at least one child with nimber 0. Using case analysis, we accomplish that goal.

Consider the initial position
(0, 6n + 7, 0) where n ≥ 0

The first move brings (0, 6n + 7, 0) to a state of the form (m, 6n + 7−m, 0) , where 1 ≤ m ≤ 3n + 3.
If m = 3n + 3,

(3n + 3, 3n + 4, 0)

only child−−−−−−→ (3n + 3, 3n + 3, 1)

If m ≤ 2n + 2 and m is odd:
Then, consider the following move sequence,

(m, 6n + 7−m, 0)

one possible child−−−−−−−−−−−→ (m, 6n+7−m
2 , 6n+7−m

2 )

If m ≤ 2n + 2 and m is even:
Consider the following move sequence:

(m, 6n + 7−m, 0)

one possible child−−−−−−−−−−−→ (m, 6n + 7− 2m, m)

∼= (0, 6n + 7− 3m, 0)

Since m is odd, we can write it as 2i for some 1 ≤ i ≤ n + 1.

(0, 6n + 7− 3m, 0)

∼= (0, 6n + 7− 6i, 0)

∼= (0, 6(n− i) + 7, 0)

By our induction hypothesis, (0, 6(n− i) + 7, 0) has nimber 0.

If m ≥ 2n + 3:
The move sequence below works:

(m, 6n + 7−m, 0)

one possible child−−−−−−−−−−−→ (m, m, 6n + 7− 2m)
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Details for 6n + 9 Case
Consider the initial position

(0, 6n + 9, 0) where n ≥ 0

The first move brings (0, 6n + 9, 0) to a state of the form (m, 6n + 9−m, 0) , where 1 ≤ m ≤ 3n + 4.
If m = 3n + 4,

(3n + 4, 3n + 5, 0)

only child−−−−−−→ (3n + 4, 3n + 4, 1)

If m ≤ 2n + 3 and m is odd:
Then, consider the following move sequence,

(m, 6n + 9−m, 0)

one possible child−−−−−−−−−−−→ (m, 6n+9−m
2 , 6n+9−m

2 )

If m ≤ 2n + 3 and m is even:
Consider the following move sequence:

(m, 6n + 9−m, 0)

one possible child−−−−−−−−−−−→ (m, 6n + 9− 2m, m)

∼= (0, 6n + 9− 3m, 0)

Since m is odd, we can write it as 2i for some 1 ≤ i ≤ n + 1.

(0, 6n + 9− 3m, 0)

∼= (0, 6n + 9− 6i, 0)

∼= (0, 6(n− i) + 9, 0)

By our induction hypothesis, (0, 6(n− i) + 9, 0) has nimber 0.

If m ≥ 2n + 3:
The move sequence below works:

(m, 6n + 9−m, 0)

one possible child−−−−−−−−−−−→ (m, m, 6n + 9− 2m)
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Details for 6n + 11 Case
Consider the initial position

(0, 6n + 11, 0) where n ≥ 0

The first move brings (0, 6n + 11, 0) to a state of the form (m, 6n + 11−m, 0) , where 1 ≤ m ≤ 3n + 5.
If m = 3n + 5,

(3n + 5, 3n + 6, 0)

only child−−−−−−→ (3n + 5, 3n + 5, 1)

If m ≤ 2n + 3 and m is odd:
Then, consider the following move sequence,

(m, 6n + 11−m, 0)

one possible child−−−−−−−−−−−→ (m, 6n+11−m
2 , 6n+11−m

2 )

If m ≤ 2n + 3 and m is even:
Consider the following move sequence:

(m, 6n + 11−m, 0)

one possible child−−−−−−−−−−−→ (m, 6n + 11− 2m, m)

∼= (0, 6n + 11− 3m, 0)

Since m is odd, we can write it as 2i for some 1 ≤ i ≤ n + 1.

(0, 6n + 11− 3m, 0)

∼= (0, 6n + 11− 6i, 0)

∼= (0, 6(n− i) + 11, 0)

By our induction hypothesis, (0, 6(n− i) + 11, 0) has nimber 0.

If m ≥ 2n + 3:
The move sequence below works:

(m, 6n + 11−m, 0)

one possible child−−−−−−−−−−−→ (m, m, 6n + 11− 2m)
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Transfer Possibilities
Consider a variation on the game described above, where we have the same point set P as before, and in addition to what
a player could do before, it is also possible for a player to move stones from P1 to P3 or vice versa, provided the following
invariants are respected:

1. s(P1) ≤ s(P2) and s(P3) ≤ s(P2).

2. If the first move makes s(P1) < s(P3), then for the rest of the game s(P1) ≤ s(P3) must hold.
If the first move makes s(P3) < s(P1), then for the rest of the game s(P3) ≤ s(P1) must hold.

Also notice that if we have a game state of the form

(a, b, c)

we can assume WLOG that a ≥ c, and according to the invariant we know b ≥ a. Then we can say

(a, b, c) ∼= (a− c, b− c, 0)

and this knowledge allows us to represent any state as just a 2-tuple.

Now I worked on analyzing this situation for a while without any results, because the numbers seemed quite random. Then
when another student in the class started to work on this problem, he pointed out that his data was different, prompting me
to hunt for bugs in my code. I have since corrected the bugs to the best of my ability, but since I had moved on to a different
problem, I was not able to return to exploring this.

In the Triangle folder among my code for this game, I have included a program called interactive that when run with a
numerical command line argument n (e.g. ./interactive 31) produces an n × n grid with cells where the cell (r, c) (both
row and column are zero-indexed) contains the nimber for the game (c, r, 0) . If a cell has the number −1 in it, it is an
invalid state and should be ignored. Note that clicking on a cell highlights all the cells representing its child states, making
it easier for a user to investigate what is really going on in the game. Actually, the way the squares are highlighted in the
diagram below inspired the creation of the next game that we are about to consider. It arose as a simplification of this game’s
pattern.
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Chess Description
Suppose we have a chessboard, and there’s a knight somewhere on this chessboard. The location of the knight is indicated
by a blue square. As an example consider the drawing below:

Two people look at this board and decide to play a game.
One tells the other “Let’s take turns moving this knight towards the top left of this board using only knight-like moves. If I
am left with no legal moves on my turn, I lose. If you can’t make any move on your turn, you lose”, and since she is bored,
she readily agrees.
What can we say about this game? For clarity, the moves that the first player can make are highlighted in red below. The
the possible moves for the rest of the game should be clear . . .

Note that the term “single-up double-left move” means a move where the knight moves i squares above and 2i squares to
the left. What this i will be understood easily from the context of the explanation.
Similarly the term “double-up single-left move” means a move where the knight moves 2i squares above and i squares to the
left. What this i will be understood easily from the context of the explanation.
Observe that every square has a certain nimber, so ideally we should come up with a system to figure out the nimber given
a row, column pair.
For additional inspiration/motivation, a manually computed and color-coded diagram of the board is presented below:
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This is a larger, uncolored version of the board with more nimbers. There are 26 rows and 26 colums.
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Chess Analysis
First we establish a numbering for all the squares.
A square can be identified by a (row, column) pair.
The rows are numbered from top to bottom, starting at 0.
The columns are numbered from left to right, also starting at 0.

Let Dm
(r,c) represent the square (r + m, c + 2m), where r, c and m can come from the set N ∪ {0}.

Now that this has been established we can proceed to prove some claims.
Claim:

N (Dm
(0,i)) = m, for any i ≥ 0

Proof:
We will use strong induction.

Base Cases:
N (D0

(0,i)) = 0

N (D1
(0,i)) = 1

The values for the base cases can be read off the figure on the previous page.

Induction Hypothesis:
Suppose for some m ∈ N, the claim is true for all k < m.

Induction Step:
We want to prove that the claim is true for m + 1.

Consider the square Dm+1
(0,i) , and notice that we can reach any square of the form Di

(0,i) where 0 ≤ i ≤ m from this square

using a single-up double-left move. So by the I.H., we can reach any position with nimber i where 0 ≤ i ≤ m from the square
using a single-up double-left move.

Now consider an arbitrary square reachable from Dm+1
(0,i) with a double-up single-left move. We can only make less than m+1

single-up double-left or less than m + 1 double-up single-left moves from such a square to reach the sides of the square, so it
is just not possible for such a square to have a nimber greater than or equal to m + 1.

Thus, the set of nimbers of all the positions reachable from Dm+1
(0,i) is just {0, 1, 2, . . . ,m}. By the Sprague-Grundy Theorem,

N (Dm+1
(0,i) ) = m + 1 because m + 1 = mex({0, 1, 2, . . . ,m}).

Thus the claim is true for m + 1. �
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Claim:

N (Dm
(2,1)) =

{
(m + 1), if m ≡ 0 (mod 2)

(m− 1), if m ≡ 1 (mod 2)

Proof:
We will use a variant of strong induction.

Base Cases:
N (D0

(2,1)) = 1

N (D1
(2,1)) = 0

N (D2
(2,1)) = 3

N (D3
(2,1)) = 2

The values for the base cases can be read off the figure on the previous page.

Induction Hypothesis:
Suppose for some m ∈ N, m ≡ 1 (mod 2) the claim is true for all k < m.

Induction Step:
We want to prove that the claim is true for m + 1 and m + 2.

We need to prove that N (Dm+1
(2,1) ) = m + 2.

From Dm+1
(2,1) , we can reach any square of the form D2j

(2,1) where 0 ≤ j ≤ m+1
2 − 1 using a single-up double-left move.

By the induction hypothesis, this means that from Dm+1
(2,1) we can reach squares with nimbers in

the set {2j + 1 : 0 ≤ j ≤ m−1
2 } = {o : o is an odd number less than m + 1}.

From Dm+1
(2,1) , we can also reach any square of the form D2j+1

(2,1) where 0 ≤ j ≤ m−1
2 using a single-up double-left move.

this means that from Dm+1
(2,1) we can reach squares with nimbers in

the set {2j : 0 ≤ j ≤ m−1
2 } = {e : e is an even number less than m + 1}.

It follows that from Dm+1
(2,1) , we can definitely reach game states with nimbers in the set {0, 1, . . . ,m}.

Now consider an arbitrary square reachable from Dm+1
(2,1) with a double-up single-left move. We can only make less than m+1

single-up double-left or less than m + 1 double-up single-left moves from such a square to reach the sides of the square, so it
is just not possible for such a square to have a nimber greater than m + 1.
But notice that when we start out at Dm+1

(2,1) and then move two squares up and one square to the left we get to the square

Dm+1
(0,0) , whose nimber — as we proved earlier — is m + 1.

No other squares reachable from Dm+1
(2,1) matter to us as they have lower nimbers.

We have shown that from this square we can get to game states whose nimbers cover the set {0, 1, . . . ,m + 1}.
By the Sprague-Grundy Theorem, N (Dm+1

(2,1) ) = mex({0, 1, . . . ,m + 1}) = m + 2.

This means that the claim holds for m + 2.

Now consider the square Dm+2
(2,1) .

We want to show N (Dm+2
(2,1) ) = m + 1.

We already know that using single-up double-left moves from Dm+2
(2,1) , the nimbers of the game states that we can reach cover

the set ({0, 1, . . . ,m + 2} \ {m + 1}).
Notice that Dm+2

(2,1) = (m + 4, 2m + 5).

If we move two squares up and one square left from here we reach (m + 2, 2m + 4) = Dm+2
(0,0) which has nimber m + 2.

If we move another two squares up and one square left we get to (m, 2m + 3) = Dm
(0,3), which has nimber m.

Moving a further two squares up and one square left takes us to (m− 2, 2m+ 2). Note that from here the number of possible
single-up double-left moves is m− 2 and the number of double-up single-left moves is m−2

2 , so this square has a nimber that
is less than or equal to m− 1.
Thus all the other moves of the double-up single-left variety are irrelevant to us.
It follows that the set of the nimbers of all the squares that we can reach from Dm+2

(2,1) is ({0, 1, . . . ,m + 2} \ {m + 1}). The

mex of this set is m + 1, so by the Sprague-Grundy Theorem, N (Dm+2
(2,1) ) = m + 1.

We have proved that the claim holds for m + 1 and m + 2. �
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Claim:

N (Dm
(3,0)) =


m, if m ≡ 0 (mod 4)

m + 1, if m ≡ 1, 2 (mod 4)

m− 2, if m ≡ 3 (mod 4)

Proof:
We will use a variant of strong induction.

Base Cases:
N (D0

(3,0)) = 0

N (D1
(3,0)) = 2

N (D2
(3,0)) = 3

N (D3
(3,0)) = 1

N (D4
(3,0)) = 4

N (D5
(3,0)) = 6

N (D6
(3,0)) = 7

N (D7
(3,0)) = 5

The values for the base cases can be read off the figure on the previous page.

Induction Hypothesis:
Suppose for some m ∈ N, m ≡ 3 (mod 4) the claim is true for all k < m.

Induction Step:
We want to prove that the claim is true for m + 1, m + 2, m + 3 and m + 4.

First consider Dm+1
(3,0) .

From this square, we can get to any square of the form D4j
(3,0) where 0 ≤ j ≤ m+1

4 − 1 using one single-up double-left move.

By the I.H., the nimbers of these squares make up the set {4j : 0 ≤ j ≤ m+1
4 − 1} = {k : k ≡ 0 (mod 4) and k < m + 1}.

From Dm+1
(3,0) , we can also get to any square of the form D4j+1

(3,0) where 0 ≤ j ≤ m+1
4 − 1 using one single-up double-left move.

By the I.H., the nimbers of these squares make up the set {4j + 2 : 0 ≤ j ≤ m+1
4 − 1} = {k : k ≡ 2 (mod 4) and k < m+ 1}.

We can also get to any square of the form D4j+2
(3,0) where 0 ≤ j ≤ m+1

4 − 1 using one single-up double-left move.

By the I.H., the nimbers of these squares make up the set {4j + 3 : 0 ≤ j ≤ m+1
4 − 1} = {k : k ≡ 3 (mod 4) and k < m+ 1}.

Finally, we can get to any square of the form D4j+3
(3,0) where 0 ≤ j ≤ m+1

4 − 1 using one single-up double-left move.

By the I.H., the nimbers of these squares make up the set {4j + 1 : 0 ≤ j ≤ m+1
4 − 1} = {k : k ≡ 1 (mod 4) and k < m+ 1}.

So, finding the union of all these sets, we gather that using a single-up double-left move, all the nimbers we can reach make
up the set {0, 1, . . . ,m}.
What if we use a double-up single-left move from Dm+1

(3,0) though?

Moving two squares up and one square to the left gets us to Dm
(2,1) where m ≡ 3 (mod 4)⇒ m ≡ 1 (mod 2), N (Dm

(2,1)) = m−1
according to our previous proof.
From here, moving two squares up and one square to the left gets us to Dm

(0,0) and we know N (Dm
(0,0)) = m.

Finally, moving another two squares up and one square to the left gets us to Dm−2
(0,3) and we know that the nimber here or

any square to the top-left of this one cannot be m + 1 or more because there is not enough space to make m disinct moves
of either the single-up double-left variety or the double-up single-left variety.
It follows that the set of all the nimbers of the children of Dm+1

(0,3) is {0, 1, . . . ,m}. The mex of this set is m + 1 and by the

Sprague-Grundy theorem N (Dm+1
(0,3) ) = m + 1.

This proves that the claim holds for m + 1.

Now consider Dm+2
(3,0) .

We are already aware that the set of nimbers of all the child states that can be reached from this square using single-up
double-left moves is {0, 1, . . . ,m + 1}.
So let us move two squares up and one square left from here to reach Dm+1

(2,1) , where m + 1 ≡ 0 (mod 2). This means

N (Dm+1
(2,1) ) = m + 2.

Moving two more squares up and one square left gets us to Dm+1
(0,0) which has nimber m + 1.

Finally moving a further two squares up and one square left gets us to Dm−1
(0,3) which cannot have a nimber greater than or

equal to m + 1.
So the set of nimbers of the squares reachable from Dm+2

(3,0) in one move is {0, 1, . . . ,m + 2} whose mex is m + 3.

Thus N (Dm+2
(3,0) ) = m + 3. The claim holds for m + 2 as well.
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Now consider Dm+3
(3,0) .

We are already aware that the set of nimbers of all the child states that can be reached from this square using single-up
double-left moves is {0, 1, . . . ,m + 1} ∪ {m + 3}.
So let us move two squares up and one square left from here to reach Dm+2

(2,1) , where m + 2 ≡ 1 (mod 2). This means

N (Dm+2
(2,1) ) = m + 1.

Moving two more squares up and one square left gets us to Dm+2
(0,0) which has nimber m + 2.

Finally moving a further two squares up and one square left gets us to Dm
(0,3) which cannot have a nimber greater than or

equal to m + 1.
So the set of nimbers of the squares reachable from Dm+3

(3,0) in one move is {0, 1, . . . ,m + 3} whose mex is m + 4.

Thus N (Dm+3
(3,0) ) = m + 4. So, the claim holds for m + 3 as well.

Finally consider Dm+4
(3,0) .

We are aware that the set of nimbers of all the child states that can be reached from this square using single-up double-left
moves is {0, 1, . . . ,m + 1} ∪ {m + 3,m + 4}.
So let us move two squares up and one square left from here to reach Dm+3

(2,1) , where m + 3 ≡ 0 (mod 2). This means

N (Dm+3
(2,1) ) = m + 4.

Moving two more squares up and one square left gets us to Dm+3
(0,0) which has nimber m + 3.

Moving a further two squares up and one square left gets us to Dm+1
(0,3) which cannot have a nimber greater than or equal to

m + 2.
So the set of nimbers of the squares reachable from Dm+3

(3,0) in one move is {0, 1, . . . ,m + 1} ∪ {m + 3,m + 4} whose mex is
m + 2.
Thus N (Dm+4

(3,0) ) = m + 2. So, the claim holds for m + 4 as well.

We proved the claim for m + 1, m + 2, m + 3 and m + 4. This allows us to conclude, by strong induction, that the proposed
formula holds for all m ∈ N. �
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Chess Possibilities
The observation that we can make by looking at the nimbers (using a program to calculate nimbers) is that the values of
Dm+1

(r,c) −Dm
(r,c) for m ≥ 0 may initially appear to be unstructured and then settle into a cycle, repeating periodically. Also,

there is a different cycle for each new initial (r, c) used as a starting point for Dm
(r,c).

Some cycles that have been observed (but not proved) follow. They have been matched up with the appropriate starting
squares in (row, column) notation. Keep in mind that some of sequences start with seemingly unpredictable nimbers and
those parts have been disregarded.

(7 , 7): 5, 1, 1,-3

(8 , 8): 5, 1, 1,-3, 4, 2, 1, 1,-3

(9 , 9): 2, 1,-2, 3

(10,10): 6, 1, 1, 1,-4, 6, 1, 1, 1,-4, 5, 2, 1, 1, 1,-4

(11,11): -1,-2, 5, 1, 2,-4, 6, 1,-4, 6,-4, 5, 1,-3, 6,-1,

2,-3, 4, 3, 1, 1,-4, 1, 4, 2, 2

(12,12): 1, 1,-5, 7, 1, 1

(13,13): 7, 1,-5, 6, 1,-4, 7, 1, 1, 1,-5, 1, 5, 3, 1, 1,

1,-5, 1, 6, 1, 2, 1,-5, 7, 1,-5, 7,-1,-3, 6, 2,

-1, 3,-5, 6, 1, 2,-5, 7,-1, 2,-4, 7,-1, 3, 1,-5

(14,14): 1, 1, 1,-4, 6,-1, 2, 2,-1, 3, 1, 1, 1,-4, 6, 1,

1, 1,-4, 5, 1, 2, 1, 1, 1,-4, 6

(15,15): 1, 1,-6, 1, 8, 1, 1, 1, 1,-6, 1, 8, 1, 1, 1, 1,

-6, 1, 8, 1, 1, 1, 1,-6, 1, 7, 2, 1, 1, 1,-6, 7,

-5, 8, 1, 1

The idea is that these can lead us to new formulae worth proving (like the ones proved in the analysis section).

18


